
Rolling your own
Detections as Code
Ft. Elastic Security

<p>Mika Ayenson : @stryker0x</p>
<p>Justin Ibarra : @br0k3ns0und</p>

<p>
Mika Ayenson, Ph.D.
Senior Security Research Engineer @

Elastic
</p>

HELLO! I’m…

@stryker0x

<p>
Justin Ibarra,
Threat Research and Detection
Engineering Lead @ Elastic
</p>

HELLO! I’m…

@br0k3ns0und

06

What it is DaC
and Why it’s
Needed

TABLE OF CONTENTS.
High Level
Components,
Workflows, and
Delineation.

Quickstart E2E
Reference Example

Go Deeper with
Advanced Features

01

Conclusion and
Questions

Bias to Leverage
detection-rules.

02 03

04 05Slides only

<p> Perhaps you’ve heard of Infrastructure as
Code (IaC)?! DaC is the close relative! </p>

What is DaC and why it’s
needed?

Aide responding
rapidly to
emerging threats.

Security
Analysts

Target Audience!

Detection
Engineers

Security
Team Leads

DevOps
Engineers

IT Security
Architects

Streamline
detection logic
development,
testing, and
deployment.

Seeking to
implement best
practices for rule
version control,
auditing, and
quality assurance.

Exploring ways to
incorporate
as-code
principles into
security
operations.

Integrating
security practices
into CI/CD
pipelines, aiming
for a more cohesive
and automated
approach.

It’s more than just a CI/CD workflow
<p> DaC: A methodology that applies software development practices to the creation
and management of security detection rules, enabling automation, version control,
testing, and collaboration in the development & deployment of security
detections.</p>

But WHY do we
Need this?

 Ever-Growing Rule Sets

 Broader Adoption of Automation

 Drive Security Team Towards Maturity

 Expanding Threat Landscape

 Compliance and Governance

#rules * #Platforms *
#Elastic Security versions
= Many Permutations

😩 How are you testing… if at all?

Test frameworks
emerge and
adoption as
companies begin to
showcase DaC.

Early mentions may
have been
considered as
codifying security
detections.

TIMELINE of How the concept evolved

Growth in interest
evolved (e.g. RTA,
ART) into automated
detection logic
internal workflows.

2014-2016 2017-2019 2020-2023

Widespread
adoption and
advertisement of
DaC how-to-guides
blogs.

2024-Present Future

DaC capabilities
fully implemented
within company
security solution
offerings.

<p> When unpacking the essential elements, navigating
through the processes, and defining the scope, we
found that there is no one single option. </p>

High Level components, AND
CONCEPTS.

Multiple approaches for multiple users

“As an MSSP I need
to manage multiple
customers’ dev/prod

clusters with
different rulesets.”

“As an Enterprise, I
need to manage

multiple air-gapped
dev/prod spaces.”

User A User B User C
“As a limited SMB, I
need to automate as
much as possible.”

Hierarchy and Lexicon of Concepts
● Core components

○ Sub-components
■ SC Options

○ CC Options
● Governance models

What are the concepts and
components and how do they
relate to each other?

Hierarchy

Lexicon
Consistent verbiage and
nomenclature enables simpler
collaboration and planning.

Core components

Sub-components

Options

Core COMPONENTS Flow by Governance

Hierarchy

Core components
● Maintaining rules within a

Version Control System (VCS)
● Syncing rules from VCS to

their respective platform
● Managing rules within the

platform
● Syncing rules from the

platform to VCS

● Core components
○ Sub-components

SC Options
○ CC Options

● Governance models

Hierarchy

SUB-COMPONENTS AND OPTIONS
● Maintaining rules within VCS

○ Rule schema validation
■ Local repo dataclass
■ Remote Kibana REST API

○ Detection logic validation
■ Local EQL/KQL lib validation
■ Remote Kibana REST API

○ ...
● Syncing from VCS to platform

○ ...

● Core components
○ Sub-components

SC Options
○ CC Options

● Governance models

Governance Models
● VCS as authoritative
● Platform as authoritative
● Dual sync between VCS and

the platform

Hierarchy

● Core components
○ Sub-components

SC Options
○ CC Options

● Governance models

SYNCING OPTIONS

RULE MANAGEMENT OPTIONS

Core COMPONENTS Flow by Governance

DESCRIPTION

RULE MANAGEMENT OPTIONS

CC: Maintaining Rules
within VCS

Requirements

Covers creating and managing
rules as code locally and using
version control tools like git
to Sync to the VCS.

- Dedicated repo to store
detection rules and collaborate
- Local schema and query
validation tools

- Directly create, modify, and
manage rule files locally
- Manually push/pull rules to
VCS for backup/version control

DESCRIPTION

RULE MANAGEMENT OPTIONS

CC: syncing rules from vcs to
the platform

Requirements

Covers the automated or manual
processes of deploying or
updating rules in Elastic
Security from VCS.

- API access to Elastic Stack
- Authentication credentials
- CI/CD pipeline (optional)

- Import rules into Elastic
Security using CLI or API
- Configure CI/CD for automated
syncing

DESCRIPTION

RULE MANAGEMENT OPTIONS

CC: Managing rules within
Your Platform

Requirements

Focuses on creating, testing, and
managing rules directly in Elastic
Security, while considering backup
and versioning strategies.

- Elastic Security access with
permissions
- Knowledge of Elastic
Security's UI

- Directly create, modify, and
manage rules in Elastic Security
- Manually export rules for
backup/version control

DESCRIPTION

RULE MANAGEMENT OPTIONS

CC: Syncing rules from Your
Security Solution to VCS

Requirements

Describes exporting and
versioning rules from Elastic
Security back into VCS for
tracking and collaboration.

- Scripting for API interaction
- Authentication
- CI/CD setup for automation
(optional)

- Export rules using Detection
Engine API
- Commit exported rules into VCS
- Use CI/CD workflows to
automate the process

DESCRIPTION

RULE MANAGEMENT OPTIONS

GM: Dual Sync Between VCS
and platform

Requirements

Highlights a hybrid approach
that ensures rules are
synchronized and up-to-date in
both Elastic Security and VCS.

- Setup for bidirectional syncing
- Authentication
- Access
- Automation tools/scripts

- Establish sync process for both
directions
- Automate sync using CLI, API, and
CI/CD
- Regularly review and reconcile
discrepancies

<p> We preference proven practices and spotlight the
'detection-rules' repository as the cornerstone of effective
DaC methodologies, but why? </p>

Bias to leverage detection-rules

github/elastic/
detection-rules
<p> First, here’s a primer on the
github.com/elatic/detection-rules
repo, features, and CLI w/DaC
context. </p>

Repo Structure
Rules and Dac Rule
Management
<p> We store our rule management
and testing Python logic next to
our Prebuilt rules with entry
points in our unit test and the
CLI </p>

Available Behavior and
BUilding Block
Prebuilt Detections
<p> Our prebuilt rules contain
endpoint and integration specific
detections; some backed by
building block rules. Users can
place their existing rules in a
CUSTOM_DIR, which is ingested by
the rule loader.</p>

Red Team Automation
<p> RTAs have been around since
Endgame days. We now maintain a
set of endpoint RTAs within the
detection-rules repo. </p>

KQL and Kibana
python Libraries
<p> We’ve decoupled these two
Python libraries to be installed
as independent third-party
packages. Note: No pypi support.
</p>

A little Deep..er
Let’s go A little

bit Deep..er

Dataclass and
Marshmallow Schema
Validation
<p> Many of the query languages
and rule fields are supported to
enable local stack-independent
validation. </p>

Unit testing and Query
Validation
<p> Out of the box, there is query
syntax and semantic validation.
Also, it provides unit tests that
follow best practices.</p>

Miscellaneous Files for
Custom Configuration
<p> We maintain different files to
manage and configure how the rules
are versioned and tested. </p>

How we use the CLI
internally
<p> From the beginning, the CLI
has served as the core entry point
to our CI/CD version and release
pipelines. We’ve recently exposed
more of this functionality for
others to use! </p>

<p> Let’s see a use case where the user wants to
implement DaC from scratch.</p>

Quickstart E2E Reference
Example

Let’s go Alpha!

SSH Keys Python Git GitHub Access

Download and
install the
Python 3.12+
version.

OS Prerequisites to Follow

Download and
install the
latest version
of Git.

Create a
GitHub account
if one does
not already
exist.

Optionally
configure
connecting to
GitHub with
SSH.

Permissions to
manage and
configure
GitHub Action
secrets.

<p> Note: If using an alternative VCS, you will need to translate the
principles. Remember this is just one way out of many.</p>

https://www.python.org/downloads/
https://git-scm.com/downloads
https://docs.github.com/en/get-started/start-your-journey/creating-an-account-on-github
https://docs.github.com/en/authentication/connecting-to-github-with-ssh
https://docs.github.com/en/actions/security-guides/using-secrets-in-github-actions

Optionally deploy Elastic
Security using the ECP to get up
and running quickly.

1. Navigate to
https://github.com/peasead/
elastic-container.git

2. Install the prerequisites
3. Follow the instructions to

deploy ECP with docker

Setup Elastic Security with ECP
Task

Steps

https://github.com/peasead/elastic-container.git
https://github.com/peasead/elastic-container.git
https://github.com/peasead/elastic-container/tree/main?tab=readme-ov-file#prerequisites
https://github.com/peasead/elastic-container/tree/main?tab=readme-ov-file#steps

Fork & Clone Repo

Fork and clone the Elastic
detection-rules repo to start
managing custom rules with the
CLI provided.

Task

Steps
1. Navigate to

https://github.com/elastic/
detection-rules/fork

2. Choose an owner
3. Click Create Fork
4. Navigate to the forked repo
5. Click Copy url to clipboard
6. Open terminal
7. Run: git clone

git@github.com:<repo>/detec
tion-rules.git

https://github.com/elastic/detection-rules/fork
https://github.com/elastic/detection-rules/fork

Install Python Dependencies

Within the terminal, install the
Python dependencies required to
use the CLI and test to make
sure it’s available.

Task

Steps
1. Run: python -m venv env
2. Run: source

env/bin/activate
3. Run: cd detection-rules
4. Run: pip install .[dev]
5. Run: pip install lib/kql

lib/kibana
Optionally use the make command
provided with the Makefile to
create the virtual environment
and install dependencies.

Configure Remote Authentication

Create an auth config locally to
connect to Elastic Security with
the CLI.

Task

Steps
1. Create a file in the root

of the repo called
.detection-rules-cfg.json

2. Supply username, password,
and either
elasticsearch_url or
cloud_id

3. Test the connection

1. Run: python -m
detection_rules dac init
--custom_dir <directory name>

2. Run: export
CUSTOM_RULES_DIR=<directory
name>

3. Edit the _config.yaml for
additional customization (e.g
action list, exception list,
testing config path, schema,
etc.)

Create & Configure Custom Dir

Specify the custom rules folder,
initialize the default config
files for schema validation, and
set the CUSTOM_RULES_DIR.

Task

Steps

Configure Unit Testing

Configure specific unit tests to
bypass or test_only. Additional
select specific rules to skip or
test_only. Default executes all.

Task

1. Review the prebuilt unit
tests within
detection_rules/tests/ to
opt-out/opt-in

2. Optionally modify the test
config file
etc/example_test_config.yaml
within the CUSTOM_RULES_DIR
to specify specific test
conditions

Steps

1. Use the interactive CLI to
create a rule. Run: python
-m detection_rules
create-rule test.toml
--required-only

2. Visually review the created
file

Alternatively copy an existing
prebuilt rule as a template and
modify the values.

Create TOML Rule

Create a custom detection rule
TOML file and store within the
CUSTOM_RULES_DIR.

Task

Steps

Create ActioN List

Optionally configure action
lists if managing in TOML files
independent from the detection
rule logic.

Task

Steps
1. Modify the

CUSTOM_RULES_DIR/_config.yaml
to specify the action_dir if
not supplied on dac init

2. Create an action list TOML
file in the actions directory
mapped to the rules

1. Modify the
CUSTOM_RULES_DIR/_config.yaml
to specify the exceptions_dir
if not supplied on dac init

2. Create an exception list TOML
file in the exceptions
directory mapped to the rules

Create Exception List

Optionally configure exception
lists if managing in TOML files
independent from the detection
rule logic.

Task

Steps

Efficacy and Functional Testing Opportunities

Prior to opening a PR to track
custom rules in VCS, perform
testing and validation.

Task

1. Run:
CUSTOM_RULES_DIR=custom-rul
es python -m
detection_rules test

2. Test the query within
Elastic Security to check
telemetry

Steps

Task

Steps

Determine the best versioning
strategy either using either:

● a) Kibana revision field
managed by the detection
engine

● b) CLI version lock strategy

Rule Versioning Strategy

1. Prior to publishing
production rules Run:
python -m detection_rules
dev build-release
--update-version-lock

2. Commit the version.lock

Traditional PR Review Picasso

Collaborate with the internal
team on the new and tuned rules
to review / improve detection
rules.

Task

Steps
1. Create a PR to your forked

repo and follow traditional
PR best practices

2. Review rule metadata
3. Ensure query best detects the

threat
4. When unit tests pass, merge!

👋 If you’d like to contribute a
good rule upstream, Create a PR
from a Fork!

Picture of a
PR with
comments on
specific
things

https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/creating-a-pull-request
https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/creating-a-pull-request-from-a-fork
https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/creating-a-pull-request-from-a-fork

1. Create a new branch
protection rule for the
main branch

2. Under "Require status
checks to pass before
merging", select the CI/CD
workflows related to rule
syncing

3. Apply the branch protection
rule and test by creating a
new PR to the main branch

Configure CICD & Branch Protections

Enforce branch protection policies
requiring CI/CD workflows pass
before allowing merges so only
validated changes are deployed.

Task

Steps

https://docs.github.com/en/repositories/configuring-branches-and-merges-in-your-repository/managing-protected-branches/managing-a-branch-protection-rule
https://docs.github.com/en/repositories/configuring-branches-and-merges-in-your-repository/managing-protected-branches/managing-a-branch-protection-rule

Configure Branch Secrets and Variables

1. Add GitHub secrets for
KIBANA_URL, KIBANA_USER,
KIBANA_PASSWORD, and
READ_WRITE_GITHUB_TOKEN

2. Add a GitHub variable for
CUSTOM_RULES_DIR

Optionally defer testing to
Kibana using the built in CLI to
test rule responses.

Add GitHub Action secrets and
variables to open PRs, commit
changes, import/export Elastic
Security rules in GitHub Actions.

Task

Steps

https://docs.github.com/en/actions/security-guides/using-secrets-in-github-actions
https://docs.github.com/en/actions/learn-github-actions/variables

Create CICD Per-PR Sync Options

Configure GitHub Actions validate
and test each time a Pull Request
is created or updated, promoting
early detection of issues.

Task

1. Create a GitHub action
workflow
.github/workflows/pr-sync.y
ml workflow

2. Use the on: pull_request:
trigger

3. Monitor the PR for
successful deployment and
validate rule functionality
in the test environment

Steps

https://docs.github.com/en/actions/quickstart
https://docs.github.com/en/actions/quickstart

Create Manual Dispatch Sync Options

Create on-demand detection rules
sync to Elastic Security, giving
teams the control to push
updates as needed.

1. Define a
.github/workflows/manual-sy
nc.yml

2. Use the workflow_dispatch:
event

3. Use GitHub Actions UI to
manually trigger the
workflow and validate rule
synchronization and
versions

Task

Steps

https://docs.github.com/en/actions/using-workflows/manually-running-a-workflow

1. Create a
.github/workflows/scheduled
-pull.yml GitHub Action
file

2. Use the on: schedule:
trigger to define the
frequency of updates, such
as nightly or weekly pulls

3. Periodically review sync
PRs and commit history for
updates

Create Scheduled Sync Options
Task
Create scheduled syncs to pull
the Elastic Security rules,
ensuring consistent alignment
without manual intervention.

Steps

Create a workflow to deploy
detection rules to Elastic
Security upon new commits into
the main branch.

Create Push to Production Sync Options
Task

1. Create a
.github/workflows/sync-to-p
rod.yml GitHub Action

2. In the workflow, use the
on: push: branches: [main]
trigger

3. Add a step to verify
version lock file updates.

4. Test the workflow by
merging a test rule into
the main branch

Steps

<p> Exploring the depths of DaC capabilities
within the CLI to enhance your detection
strategies. </p>

Go Deeper with Advanced
Features

Build Release

Example Run: python -m detection_rules dev build-release --generate-navigator
Example Run: python -m detection_rules dev build-release --update-version-lock
Example Run: make release (Note: Building a package takes several minutes)

This will build a release package
that includes MITRE summary
information, changelog, and
export the rules into an NDJSON.
Useful when comprehensively
packaging the ruleset.

Integration Schemas

Example Run: python -m detection_rules dev integrations build-manifests -i endpoint
Example Run: python -m detection_rules dev integrations build-schemas -i endpoint

These commands will update the
integration manifest and
integration schemas that are used
to validate query fields. Useful
when validating custom rules
against new integration schemas.

This command will search for
alerts generated over a period of
time. Useful when
programmatically testing
detections against adversarial
activity.

Search for Alerts

Example Run: python -m detection_rules kibana search-alerts

Executing RTAs

Example Run: python -m rta -l
Example Run: python -m rta -n eicar

These commands will list and
execute red team automation
python scripts that run on
Windows, MacOS, and *nix. Useful
to emulate adversarial activity.

This command will collect events
from Elasticsearch. Useful to
collect while testing adversarial
activity (e.g. RTAs).

Collect Elastic Events

Example Run:
python -m detection_rules es collect-events 3a2437df-bed6-4d6a-b390-16f27548f340 -i "logs-endpoint.*"
(Note: The UUID is the host.id field of the endpoint)

The repo includes a Makefile to
help streamline installation and
testing. Useful for getting
started and testing out some of
the commands.

Makefile

Example Run: make deps
Example Run: make test-cli (Note: Will generate several files)

<p> We encourage you early adopters to test out our
Alpha DaC capabilities and provide feedback! </p>

Conclusion and Questions

Reference
Doc

Releasing Resources today to help you Start Rolling

DaC Use
Cases Need

Pointers?
Feel free to reach
out on Elastic’s
community slack

#security-rules-dac
channel.

Check out the
DaC-use-cases
GitHub repo for

example approaches.

Check out the
Reference doc for

pros/cons of
different
approaches.

http://elasticstack.slack.com
https://github.com/elastic/DAC-use-cases
https://dac-reference.readthedocs.io/en/latest/index.html

Connect +
Community +
Contributing
Do you have any questions?

Justin Ibarra
 @br0k3ns0und

Mika Ayenson
 @stryker0x

Thank You!

