LoFP LoFP / false positives will be limited to the number of events generated by the analytics tied to the stories. analytics will need to be tested and tuned, and the risk score reduced as needed based on the organization.

Techniques

Sample rules

Okta Risk Threshold Exceeded

Description

The following correlation identifies when a user exceeds a risk threshold based on multiple suspicious Okta activities. It leverages the Risk Framework from Enterprise Security, aggregating risk events from “Suspicious Okta Activity,” “Okta Account Takeover,” and “Okta MFA Exhaustion” analytic stories. This detection is significant as it highlights potentially compromised user accounts exhibiting multiple tactics, techniques, and procedures (TTPs) within a 24-hour period. If confirmed malicious, this activity could indicate a serious security breach, allowing attackers to gain unauthorized access, escalate privileges, or persist within the environment.

Detection logic


| tstats `security_content_summariesonly` values(All_Risk.analyticstories) as analyticstories  sum(All_Risk.calculated_risk_score) as risk_score, count(All_Risk.calculated_risk_score) as risk_event_count,values(All_Risk.annotations.mitre_attack.mitre_tactic_id) as annotations.mitre_attack.mitre_tactic_id, dc(All_Risk.annotations.mitre_attack.mitre_tactic_id) as mitre_tactic_id_count, values(All_Risk.annotations.mitre_attack.mitre_technique_id) as annotations.mitre_attack.mitre_technique_id, dc(All_Risk.annotations.mitre_attack.mitre_technique_id) as mitre_technique_id_count, values(All_Risk.tag) as tag, values(source) as source, dc(source) as source_count from datamodel=Risk.All_Risk  where All_Risk.risk_object_type = user All_Risk.analyticstories IN ("Okta Account Takeover", "Suspicious Okta Activity","Okta MFA Exhaustion") by All_Risk.risk_object,All_Risk.risk_object_type 
| `drop_dm_object_name("All_Risk")` 
|  search mitre_technique_id_count > 5 
| `okta_risk_threshold_exceeded_filter`